Cytochrome P450 - PsychonautWiki
Open main menu
Cytochrome P450 3A4 enzyme complex

Cytochrome P450 is a family of enzymes mainly responsible for the degradation of substances. It accounts for about 75% of the total metabolism in the human body.[1]

Some substances can modulate the activity of CYP enzymes by either inducing or directly inhibiting the activity of CYP. This is a major source of adverse substance reactions, as changes in CYP enzyme activity can affect metabolism and release of various substances.

For example, if one substance inhibits the CYP-mediated metabolism of another substance, the second substance may accumulate in the body in toxic amounts. Therefore, these substance interactions may require dosage adjustment or the selection of substances that do not interact with the CYP system.

Contents

Substrates

Inhibitors

 

Some CYP450 inhibitors are also MAOIs.

Make sure to check our list of MAOI interactions that can be dangerous.

Cytochrome P450 inhibitors inhibit the ability of the human body to break down certain substances, potentially increasing the amount of time a substance is active in the body.

In some cases, this inhibition of how substances are broken down in the body can lead to dangerous adverse effects. Under some conditions, this can be fatal.

See also

External links

References

  1. Guengerich FP (January 2008). "Cytochrome p450 and chemical toxicology". Chemical Research in Toxicology. 21 (1): 70–83. doi:10.1021/tx700079z. PMID 18052394. 
  2. https://www.ncbi.nlm.nih.gov/pubmed/10215755
  3. https://www.ncbi.nlm.nih.gov/pubmed/10215755
  4. 4.0 4.1 4.2 4.3 https://drug-interactions.medicine.iu.edu/clinical-table.aspx
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142198/
  6. https://www.ncbi.nlm.nih.gov/pubmed/21356216
  7. https://www.ncbi.nlm.nih.gov/pubmed/23318708
  8. https://drug-interactions.medicine.iu.edu/clinical-table.aspx
  9. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Khan IA, Shah A (2005). "In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes". Clin. Pharmacol. Ther. 77: 415–26. doi:10.1016/j.clpt.2005.01.009. PMC 1894911 . PMID 15900287. 
  10. Leclercq, Isabelle; Desager, Jean-Pierre; Horsmans, Yves (1998). "Inhibition of chlorzoxazone metabolism, a clinical probe for CYP2E1, by a single ingestion of watercress". Clinical Pharmacology & Therapeutics. 64 (2): 144–9. doi:10.1016/S0009-9236(98)90147-3. PMID 9728894. 
  11. Wenk M, Todesco L, Krähenbühl S (2004). "Effect of St John's wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females" (PDF). Br J Clin Pharmacol. 57 (4): 495–499. doi:10.1111/j.1365-2125.2003.02049.x. PMC 1884478 . PMID 15025748. 
  12. https://www.ncbi.nlm.nih.gov/pubmed/18261370
  13. 13.0 13.1 13.2 https://www.ncbi.nlm.nih.gov/pubmed/21433154
  14. https://www.ncbi.nlm.nih.gov/pubmed/7781267
  15. https://www.ncbi.nlm.nih.gov/pubmed/12130727
  16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822518/